Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Langmuir-Blodgett nanotemplates for protein crystallography.

Identifieur interne : 000083 ( Main/Exploration ); précédent : 000082; suivant : 000084

Langmuir-Blodgett nanotemplates for protein crystallography.

Auteurs : Eugenia Pechkova [Italie] ; Claudio Nicolini [Italie]

Source :

RBID : pubmed:29189770

Descripteurs français

English descriptors

Abstract

The new generation of synchrotrons and microfocused beamlines has enabled great progress in X-ray protein crystallography, resulting in new 3D atomic structures for proteins of high interest to the pharmaceutical industry and life sciences. It is, however, often still challenging to produce protein crystals of sufficient size and quality (order, intensity of diffraction, radiation stability). In this protocol, we provide instructions for performing the Langmuir-Blodgett (LB) nanotemplate method, a crystallization approach that can be used for any protein (including membrane proteins). We describe how to produce highly ordered 2D LB protein monolayers at the air-water interface and deposit them on glass slides. LB-film formation can be observed by surface-pressure measurements and Brewster angle microscopy (BAM), although its quality can be characterized by atomic force microscopy (AFM) and nanogravimetry. Such films are then used as a 2D template for triggering 3D protein crystal formation by hanging-drop vapor diffusion. The procedure for forming the 2D template takes a few minutes. Structural information about the protein reorganization in the LB film during the crystallization process on the nano level can be obtained using an in situ submicron GISAXS (grazing-incidence small-angle X-ray scattering) method. MicroGISAXS spectra, measured directly at the interface of the LB films and protein solution in real time, as described in this protocol, can be interpreted in terms of the buildup of layers, islands, or holes. In our experience, the obtained LB crystals take 1-10 d to prepare and they are more ordered and radiation stable as compared with those produced using other crystallization methods.

DOI: 10.1038/nprot.2017.108
PubMed: 29189770


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Langmuir-Blodgett nanotemplates for protein crystallography.</title>
<author>
<name sortKey="Pechkova, Eugenia" sort="Pechkova, Eugenia" uniqKey="Pechkova E" first="Eugenia" last="Pechkova">Eugenia Pechkova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa</wicri:regionArea>
<wicri:noRegion>Genoa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Fondazione EL.B.A. - Nicolini, Pradalunga, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Fondazione EL.B.A. - Nicolini, Pradalunga</wicri:regionArea>
<wicri:noRegion>Pradalunga</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nicolini, Claudio" sort="Nicolini, Claudio" uniqKey="Nicolini C" first="Claudio" last="Nicolini">Claudio Nicolini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa</wicri:regionArea>
<wicri:noRegion>Genoa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Fondazione EL.B.A. - Nicolini, Pradalunga, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Fondazione EL.B.A. - Nicolini, Pradalunga</wicri:regionArea>
<wicri:noRegion>Pradalunga</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29189770</idno>
<idno type="pmid">29189770</idno>
<idno type="doi">10.1038/nprot.2017.108</idno>
<idno type="wicri:Area/Main/Corpus">000073</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000073</idno>
<idno type="wicri:Area/Main/Curation">000073</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000073</idno>
<idno type="wicri:Area/Main/Exploration">000073</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Langmuir-Blodgett nanotemplates for protein crystallography.</title>
<author>
<name sortKey="Pechkova, Eugenia" sort="Pechkova, Eugenia" uniqKey="Pechkova E" first="Eugenia" last="Pechkova">Eugenia Pechkova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa</wicri:regionArea>
<wicri:noRegion>Genoa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Fondazione EL.B.A. - Nicolini, Pradalunga, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Fondazione EL.B.A. - Nicolini, Pradalunga</wicri:regionArea>
<wicri:noRegion>Pradalunga</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nicolini, Claudio" sort="Nicolini, Claudio" uniqKey="Nicolini C" first="Claudio" last="Nicolini">Claudio Nicolini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa</wicri:regionArea>
<wicri:noRegion>Genoa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Fondazione EL.B.A. - Nicolini, Pradalunga, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Fondazione EL.B.A. - Nicolini, Pradalunga</wicri:regionArea>
<wicri:noRegion>Pradalunga</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature protocols</title>
<idno type="eISSN">1750-2799</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cattle (MeSH)</term>
<term>Chickens (MeSH)</term>
<term>Cholesterol Side-Chain Cleavage Enzyme (chemistry)</term>
<term>Crystallization (instrumentation)</term>
<term>Crystallization (methods)</term>
<term>Crystallography, X-Ray (instrumentation)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Equipment Design (MeSH)</term>
<term>Marantaceae (chemistry)</term>
<term>Models, Molecular (MeSH)</term>
<term>Muramidase (chemistry)</term>
<term>Nanostructures (chemistry)</term>
<term>Plant Proteins (chemistry)</term>
<term>Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bovins (MeSH)</term>
<term>Cholesterol side-chain cleavage enzyme (composition chimique)</term>
<term>Conception d'appareillage (MeSH)</term>
<term>Cristallisation (instrumentation)</term>
<term>Cristallisation (méthodes)</term>
<term>Cristallographie aux rayons X (instrumentation)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Lysozyme (composition chimique)</term>
<term>Marantaceae (composition chimique)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Nanostructures (composition chimique)</term>
<term>Poulets (MeSH)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines végétales (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cholesterol Side-Chain Cleavage Enzyme</term>
<term>Muramidase</term>
<term>Plant Proteins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Marantaceae</term>
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cholesterol side-chain cleavage enzyme</term>
<term>Lysozyme</term>
<term>Marantaceae</term>
<term>Nanostructures</term>
<term>Protéines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Crystallization</term>
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallization</term>
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cristallisation</term>
<term>Cristallographie aux rayons X</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cattle</term>
<term>Chickens</term>
<term>Equipment Design</term>
<term>Models, Molecular</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="fr">
<term>Animaux</term>
<term>Bovins</term>
<term>Conception d'appareillage</term>
<term>Cristallisation</term>
<term>Cristallographie aux rayons X</term>
<term>Modèles moléculaires</term>
<term>Poulets</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The new generation of synchrotrons and microfocused beamlines has enabled great progress in X-ray protein crystallography, resulting in new 3D atomic structures for proteins of high interest to the pharmaceutical industry and life sciences. It is, however, often still challenging to produce protein crystals of sufficient size and quality (order, intensity of diffraction, radiation stability). In this protocol, we provide instructions for performing the Langmuir-Blodgett (LB) nanotemplate method, a crystallization approach that can be used for any protein (including membrane proteins). We describe how to produce highly ordered 2D LB protein monolayers at the air-water interface and deposit them on glass slides. LB-film formation can be observed by surface-pressure measurements and Brewster angle microscopy (BAM), although its quality can be characterized by atomic force microscopy (AFM) and nanogravimetry. Such films are then used as a 2D template for triggering 3D protein crystal formation by hanging-drop vapor diffusion. The procedure for forming the 2D template takes a few minutes. Structural information about the protein reorganization in the LB film during the crystallization process on the nano level can be obtained using an in situ submicron GISAXS (grazing-incidence small-angle X-ray scattering) method. MicroGISAXS spectra, measured directly at the interface of the LB films and protein solution in real time, as described in this protocol, can be interpreted in terms of the buildup of layers, islands, or holes. In our experience, the obtained LB crystals take 1-10 d to prepare and they are more ordered and radiation stable as compared with those produced using other crystallization methods.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29189770</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1750-2799</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2017</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Nature protocols</Title>
<ISOAbbreviation>Nat Protoc</ISOAbbreviation>
</Journal>
<ArticleTitle>Langmuir-Blodgett nanotemplates for protein crystallography.</ArticleTitle>
<Pagination>
<MedlinePgn>2570-2589</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nprot.2017.108</ELocationID>
<Abstract>
<AbstractText>The new generation of synchrotrons and microfocused beamlines has enabled great progress in X-ray protein crystallography, resulting in new 3D atomic structures for proteins of high interest to the pharmaceutical industry and life sciences. It is, however, often still challenging to produce protein crystals of sufficient size and quality (order, intensity of diffraction, radiation stability). In this protocol, we provide instructions for performing the Langmuir-Blodgett (LB) nanotemplate method, a crystallization approach that can be used for any protein (including membrane proteins). We describe how to produce highly ordered 2D LB protein monolayers at the air-water interface and deposit them on glass slides. LB-film formation can be observed by surface-pressure measurements and Brewster angle microscopy (BAM), although its quality can be characterized by atomic force microscopy (AFM) and nanogravimetry. Such films are then used as a 2D template for triggering 3D protein crystal formation by hanging-drop vapor diffusion. The procedure for forming the 2D template takes a few minutes. Structural information about the protein reorganization in the LB film during the crystallization process on the nano level can be obtained using an in situ submicron GISAXS (grazing-incidence small-angle X-ray scattering) method. MicroGISAXS spectra, measured directly at the interface of the LB films and protein solution in real time, as described in this protocol, can be interpreted in terms of the buildup of layers, islands, or holes. In our experience, the obtained LB crystals take 1-10 d to prepare and they are more ordered and radiation stable as compared with those produced using other crystallization methods.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pechkova</LastName>
<ForeName>Eugenia</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Fondazione EL.B.A. - Nicolini, Pradalunga, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nicolini</LastName>
<ForeName>Claudio</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Laboratories of Biophysics and Nanotechnology, University of Genoa Medical School, Genoa, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Fondazione EL.B.A. - Nicolini, Pradalunga, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Protoc</MedlineTA>
<NlmUniqueID>101284307</NlmUniqueID>
<ISSNLinking>1750-2799</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.15.6</RegistryNumber>
<NameOfSubstance UI="D002786">Cholesterol Side-Chain Cleavage Enzyme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.17</RegistryNumber>
<NameOfSubstance UI="D009113">Muramidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="N">Chickens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002786" MajorTopicYN="N">Cholesterol Side-Chain Cleavage Enzyme</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004867" MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032426" MajorTopicYN="N">Marantaceae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009113" MajorTopicYN="N">Muramidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049329" MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29189770</ArticleId>
<ArticleId IdType="pii">nprot.2017.108</ArticleId>
<ArticleId IdType="doi">10.1038/nprot.2017.108</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Nov 28;1158(3):273-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8251527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2006 Feb 15;97(3):544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16215972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 May;16(Pt 3):330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2004 Apr 1;91(5):1010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 2008 Dec;94(3):223-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2010 Jul;30(7):2745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20683008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2002;85(2):243-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11948680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jan;5(1):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10678174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1998 Aug;5 Suppl:634-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9699611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosens Bioelectron. 1995;10(1-2):105-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7734117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanosci Nanotechnol. 2006 Aug;6(8):2209-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1998 Dec 13;864:435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9928121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2009 Dec;168(3):409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 Nov;12(Pt 6):713-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Proteomics. 2004 Oct;1(3):253-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15966819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2006 Feb 15;97(3):553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16215973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2009 Feb;27(2):99-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19110330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Eukaryot Gene Expr. 2014;24(4):311-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25403961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sensors (Basel). 2012 Dec 12;12(12):17112-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23235450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Eukaryot Gene Expr. 2014;24(4):325-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25403962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Feb 15;70(3):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2007 Jan 30;23(3):1147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Eukaryot Gene Expr. 2012;22(3):219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23140163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(5):706-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19390528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2014 Jul;9(7):1621-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24922271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2012 Jul;113(7):2543-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22415930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2011 Mar;18(Pt 2):287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1997 Aug;42(2):227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9235001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2004 Dec 21;20(26):11706-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15595801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Jan 22;239(4838):385-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17836869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2010 Aug 9;99(4):1256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2012 Oct;180(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Feb;64(Pt 2):158-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18219115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Jun;61(Pt 6):809-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15930645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Jun;61(Pt 6):803-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15930644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Sci Instrum. 2007 Sep;78(9):093704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17902952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Oct;15(5):556-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16168633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Dec;59(Pt 12):2133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14646071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1995 Oct;69(4):1440-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8534814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Drug Discov Devel. 2001 Sep;4(5):671-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12825462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2010 Aug 9;99(4):1262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2004 Mar;22(3):117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15036861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 Nov;12(Pt 6):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239747</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Pechkova, Eugenia" sort="Pechkova, Eugenia" uniqKey="Pechkova E" first="Eugenia" last="Pechkova">Eugenia Pechkova</name>
</noRegion>
<name sortKey="Nicolini, Claudio" sort="Nicolini, Claudio" uniqKey="Nicolini C" first="Claudio" last="Nicolini">Claudio Nicolini</name>
<name sortKey="Nicolini, Claudio" sort="Nicolini, Claudio" uniqKey="Nicolini C" first="Claudio" last="Nicolini">Claudio Nicolini</name>
<name sortKey="Pechkova, Eugenia" sort="Pechkova, Eugenia" uniqKey="Pechkova E" first="Eugenia" last="Pechkova">Eugenia Pechkova</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000083 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000083 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29189770
   |texte=   Langmuir-Blodgett nanotemplates for protein crystallography.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29189770" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020